* 官方 Twitter: https://x.com/aiDotEngineer
* 議程: https://www.ai.engineer/worldsfair/2024/schedule
* 直播錄影
* Keynotes & CodeGen Track: https://www.youtube.com/watch?v=5zE2sMka620
* GPUs & Inference https://www.youtube.com/watch?v=JVSKlEmUr0k
* Keynotes & Multimodality Track https://www.youtube.com/watch?v=vaIiNZoXymg
* Open Models https://www.youtube.com/watch?v=R0X7mPagRiE
> ✅ 表示我有製作影片截圖和逐字稿,可以快速閱讀
## Day 1 Keynote
* Open Challenges for AI Engineering (simon)
* ✅ https://ihower.tw/watch/aief-2024-keynote-day1-open-challenges-for-ai-engineering/
* 作者自己的講稿: https://simonwillison.net/2024/Jun/27/ai-worlds-fair/
* 筆記
* LLMs like ChatGPT are tools that reward power-users
* The AI trust crisis: 如何說服用戶我們沒有拿他們資料去訓練?
* Claude 3.5 Sonnet blog 備註中寫 根本沒有拿用戶資料去訓練,很棒
* Training on unlicensed scraped data was the original sin
* prompt injection 還沒解決
* Don't publish slop!
* Take accountability for the content that you produce
* That's something LLMs will never be able to do
* 我的 FB 分享 https://www.facebook.com/ihower/posts/10161196782253971
* Llamafile: bringing AI to the masses with fast CPU inference (Mozilla)
* ✅ https://ihower.tw/watch/aief-2024-keynote-day1-llamafile/
* llamafile 可以讓 CPU 推論變快 30-500% faster (intel, AMD, arm)
* Spreadsheets-are-all-you-need: Decoding the Decoder LLM without de code
* ✅ https://ihower.tw/watch/aief-2024-spreadsheets-are-all-you-need/
* 用試算表 示範做一個 gpt-2 LLM,沒有 code,只有 excel function,這場演講把帶大家能夠一步一步理解 GPT 每一個階段在做什麼
* The Future of Knowledge Assistants (Jerry Liu)
* ✅ https://ihower.tw/watch/aief-2024-llamaindex-the-future-of-knowledge-assistants/
* AI Engineering Without Borders, swyx
* ✅ https://ihower.tw/watch/aief-2024-swyx-ai-engineering-without-borders/
* [ ] Convex Launch
* [ ] Hasura Launch: Realtime Data Connectivity for AI
* [ ] Hypermode Launch: LLMOps 產品
* [ ] Hyperspace: More Nodes Is All You Need: a peer-to-peer AI network
- [ ] BotDojo Launch: Enhancing AI Assistants with Evaluations and Synthetic Data
- [ ] Emergence Launch: AI Agents and the future enterprise
- [ ] Second Order Effects
## Dev Tools
* [ ] GitHub Next Explorations
* Next 團隊直接向 CEO 回報,負責探索軟體開發。探索之後才轉給產品團隊開發。
* https://githubnext.com/
* Code-completions -> Task completions
* https://github.blog/2024-01-17-a-developers-second-brain-reducing-complexity-through-partnership-with-ai/
* [ ] Embeddings are Stunting Agents: How Codeium Breaks Through the Ceiling for Retrieval
* Our Context awareness 是強項
* 但這個 MEEF Benchmark 是 useful 嗎? 我們採用一個新指標
* Codeium 的 LLM Retriever 最厲害
* How do we do this? More Compute!
- [ ] Cursor: Building the Human-AI Hybrid Engineer
- [ ] The AI emperor has no DAUs: why most devs still don't use code AI
- [ ] Code Generation and Maintenance at Scale
- [ ] Self-Evolving Code with AI: Enhancing Quality and Security in CI
## GPUs & Inference
- Scott Wu and the Making of Devin by Cognition AI
- ✅ https://ihower.tw/watch/aief-2024-devin/
- 我的 FB 分享 https://www.facebook.com/ihower/posts/10161198639978971
- [ ] Covalent Launch: The GPU Cheatcode: Fine-tune 20 Llama Models in 5 Minutes
- [ ] Compute & System Design for Next Generation Frontier Models
- [ ] Breaking AI’s 1 Gigahertz Barrier, Groq
- [ ] Accelerating Mixture of Experts Training With Rail-Optimized InfiniBand Networking in Crusoe Cloud
- [ ] Unveiling the latest Gemma model advancements
- [ ] Making Open Models 10x faster and better for Modern Application Innovation
## Day 2 Keynote
* 5 practival steps to go from Software Developer to AI Engineer, AWS
* ✅ https://ihower.tw/watch/aief-2024-from-software-developer-to-ai-engineer/
* Minecraft agent: https://github.com/build-on-aws/amazon-bedrock-minecraft-agent
* 我的 FB 分享 https://www.facebook.com/ihower/posts/10161198197188971
* What's new from Anthropic and what's next, Anthropic
* 沒有發表新東西,就是介紹 Claude 3.5 Sonnet 跟 Artifacts 功能而已,如果有在關注和使用 Claude 就不用看了
* LangChain Launch: Infrastructure for building reliable agents
* ✅ https://ihower.tw/watch/aief-2024-langgraph/
* Langgraph Cloud 排隊處: https://bit.ly/langgraph-cloud-beta
* 投影片 https://x.com/llama_index/status/1808164468708499482
- What We Learned From A Year of Building With LLMs
- ✅ https://ihower.tw/watch/aief-2024-what-we-learned-from-a-year-of-building-with-llms
- 講者們的同主題 blog 文章: https://applied-llms.org/#strategy-building-with-llms-without-getting-out-maneuvered
* [ ] Unlocking Developer Productivity across CPU and GPU with MAX, Modular
- [ ] Copilots Everywhere
## Multimodality
- From Text to Vision to Voice: Exploring Multimodality with OpenAI
- ✅ https://ihower.tw/watch/aief-2024-openai/
- 我的 FB 分享: https://www.facebook.com/ihower/videos/1202706250856646 我擷取了 live demo 其中一段是和 gpt-4o 對話和分享螢幕,進行 app 協作開發的過程,並配上中文字幕。
- live demo
- gpt-4o 語音對話(改變語氣蠻有趣的)、視訊對話(用相機看書的其中一頁說話、分享螢幕給 chatbot 對話,開發 app 過程做 debug 對話)
- 多模態影像解讀、Sora、voice engine model (voice clone 並換不同語言)
- [ ] Substrate Launch: the API for modular AI
- [ ] Moondream: how does a tiny vision model slap so hard?
- [ ] The era of unbounded products: Designing for Multimodal I/O
- [ ] State Space Models for Realtime Multimodal Intelligence
- [ ] The Hierarchy of Needs for Training Dataset Development
- [ ] The Multimodal Future of Education, Google
## Open Models
- [ ] Decoding Mistral AI's Large Language Models (Mistral)
- [ ] No more bad outputs with structured generation
- [ ] Building SOTA Open Weights Tool Use: The Command R Family (Cohere)
- [ ] Training Albatross: An Expert Finance LLM
- [ ] Fixing bugs in Gemma, Llama & Phi-3
- [ ] Unveiling the latest Gemma model advancements (DeepMind)
# 以下還沒釋出影片
## RAG & LLM Frameworks
- [ ] Navigating RAG Optimization with an Evaluation-Driven Compass
- [ ] Pydantic is STILL all you need
- 投影片 https://tome.app/fivesixseven/pydantic-is-still-all-you-need-clxgxz2xp0b0498210u77pznh
## Evals & LLM Ops
- [ ] How to construct domain-specific LLM evaluation systems.
- [ ] The GenAI Maturity Curve (or: You Probably Don’t Need Fine-Tuning)
- [ ] Lessons from the Trenches: Building LLM Evals That Work IRL ⭐
- https://www.ai.engineer/worldsfair/2024/schedule/lessons-from-the-trenches-building-llm-evals-that-work-irl
## Agents
- [ ] Building Reliable Agentic Systems, Factory
- [ ] Using agents to build an agent company, crewAI
## AI Leadership
- [ ] Understanding AI Stakes to Break Production Code
- [ ] Real ROI: Lessons from Enterprises that Have already succeeded with LLMs at Scale
- [ ] AI Platform Engineering
- [ ] Hiring & Building an AI Engineering Team
- [ ] E-Values: Evaluating the Values of AI
- [ ] LLM Safeguards: Security, Privacy, Compliance, Anti-Hallucination
## Export Sessions
- [ ] Building production RAG systems at scale (with 10s of millions users) Perplexity ⭐
- [ ] Building Time Series Foundation Models: The Journey to Success with Nixtla and Microsoft
- [ ] Tame your LLMs with Rust
- [ ] The future of RAG is agentic
- [ ] Vector Search is NOT All You Need (mongodb)
## Workshops
* Architecting and Testing Controllable Agents
* https://www.ai.engineer/worldsfair/2024/schedule/architecting-and-testing-controllable-agents
* https://x.com/RLanceMartin/status/1805632366213546424 2024/6/26
* https://docs.google.com/presentation/d/1QWkXi4DYjfw94eHcy9RMLqpQdJtS2C_kx_u7wAUvlZE/preview?slide=id.g273e7f400bc_0_0
* https://x.com/LangChainAI/status/1806712348348203037 2024/6/28
* 影片 https://www.youtube.com/watch?v=XiySC-d346E
* LLMs for the working programmer. Become a 10x programming centaur today!
* https://www.ai.engineer/worldsfair/2024/schedule/llms-for-the-working-programmer-become-a-10x-programming-centaur-today
* https://github.com/go-go-golems/go-go-workshop
* Low Level Technicals of LLMs
* https://www.ai.engineer/worldsfair/2024/schedule/low-level-technicals-of-llms
* https://docs.google.com/presentation/d/1O1zHLevzf2gQTlw5bs-l1raARSbIeK-buPTbjnDtx0Y/edit#slide=id.p
* neo4j
* https://github.com/neo4j-product-examples/genai-workshop/blob/main/genai-workshop.ipynb
* mongodb
* https://www.mongodb.com/developer/events/ai-agents-workshop-aiewf-2024/