Rephrase and Respond: Let Large Language Models Ask Better Questions for Themselves (RaR)
* https://twitter.com/QuanquanGu/status/1722364144379396513
* https://arxiv.org/abs/2311.04205
* https://www.laplace-ai.com/post/thesis-gpt-4-rephrase-and-respond
### One-step RaR
prompt:
Rephrase and expand the question, and respond.
### Two-step RaR
prompt1 :
Given the above question, rephrase and expand it to help you do better answering. Maintain all information in the original question.
prompt2:
(original) {question}
(rephrased) {rephrased_question}
Use your answer for the rephrased question to answer the original question.
## 有點相關議題 Catch me if you can! How to beat GPT-4 with a 13B model
https://lmsys.org/blog/2023-11-14-llm-decontaminator/
如果 training datasets 裡面已經有 test dataset 資料,那麼 benchmark 會不準過於樂觀啊
不一定是一模一樣或是類似 data,如果透過 rephrase 改寫的話,只用 n-gram overlay 或是相似性比對,就無法檢查出來其實 test dataset 有跟 training dataset 重複喔。
這篇 blog 則是講可用 LLM decontaminator 來檢查