* [Document Metadata for Higher Accuracy Retrieval](https://betterprogramming.pub/building-production-ready-llm-apps-with-llamaindex-document-metadata-for-higher-accuracy-retrieval-a8ceca641fb5)
https://twitter.com/manelferreira_/status/1711788180603896204
https://gpt-index.readthedocs.io/en/stable/module_guides/loading/documents_and_nodes/usage_metadata_extractor.html
https://gpt-index.readthedocs.io/en/stable/examples/metadata_extraction/MetadataExtraction_LLMSurvey.html
https://gpt-index.readthedocs.io/en/latest/examples/metadata_extraction/PydanticExtractor.html
https://docs.llamaindex.ai/en/stable/examples/metadata_extraction/MetadataExtractionSEC.html
langchain 的實驗 https://blog.langchain.dev/extraction-benchmarking/
GPT-4 function calling 最好
實體識別 NER, 關係識別 RE, 事件識別 EE
paper: https://twitter.com/omarsar0/status/1743661688526639468
## langchain
parallel function calling https://blog.langchain.dev/parallel-function-calling-extraction/
## llamaindex
* MultiDocAutoRetrieverPack
* https://twitter.com/llama_index/status/1739307699773518201
## Awesome LLM JSON List
https://github.com/imaurer/awesome-llm-json