* Florian 的 Advanced RAG 07: Exploring RAG for Tables (2024/3/16)
* https://ai.plainenglish.io/advanced-rag-07-exploring-rag-for-tables-5c3fc0de7af6
* https://twitter.com/omarsar0/status/1755789530710339788 (2024/2/9)
* [ ] paper: https://arxiv.org/abs/2402.05121
* https://twitter.com/omarsar0/status/1763187964501254492 (2024/2/29)
* [ ] paper: https://arxiv.org/abs/2402.17944
* Instructor 用 GPT-4V 擷取出 markdown 格式 https://python.useinstructor.com/examples/extracting_tables/
* High-Precision RAG for Table Heavy Documents
* https://medium.com/kx-systems/high-precision-rag-for-table-heavy-documents-using-langchain-unstructured-io-kdb-ai-22f7830eac9a
* 表格加上文件摘要,轉成描述再 embedding
* SpreadsheetLLM: Encoding Spreadsheets for Large Language Models (2024/7/12)
* https://arxiv.org/abs/2407.09025v1
* Language Modeling on Tabular Data: A Survey of Foundations, Techniques and Evolution (2024/8/20)
* https://arxiv.org/abs/2408.10548
## Table Summary Retrieval
* https://twitter.com/austinbv/status/1762782262096179532 (2024/2/28)
* 針對表格用 LLM 做摘要
* 用摘要來做 embeddings 索引
* 但是用原本 table 文字做 prompt
## llamaindex
* https://twitter.com/llama_index/status/1747289513934864493
* https://twitter.com/jerryjliu0/status/1730756401134461259 2023/12/2 三種方法比較
https://docs.llamaindex.ai/en/latest/examples/multi_modal/multi_modal_pdf_tables.html
推薦使用 Microsoft `Table Transformer` 從圖像中裁剪表格後,在用 GPT-4V 處理以獲得準確答案。相比直接用 GPT-4V 解析整頁 PDF 要好得多
* 使用 Unstructured
* https://docs.llamaindex.ai/en/stable/examples/query_engine/sec_tables/tesla_10q_table.html
* Advanced Tabular Data Understanding with LLMs
* https://twitter.com/llama_index/status/1755034740951015668 webinar
* https://twitter.com/llama_index/status/1756784462564921515
## langchain
https://github.com/langchain-ai/langchain/blob/master/cookbook/Semi_Structured_RAG.ipynb
* langchain 也有一篇 https://blog.langchain.dev/benchmarking-rag-on-tables/ 結論是 Multi vector with ensemble 最好,針對 table summary
* https://langchain-ai.github.io/langchain-benchmarks/notebooks/retrieval/semi_structured_benchmarking/ss_eval_multi_vector.html?ref=blog.langchain.dev
* 沒有用其他套件偵測table,只是用 LLM 判斷有 table 就摘要
* 似乎沒有處理正確的 table parsing ???
* https://twitter.com/LangChainAI/status/1735350379901272289 影片跟投影片
## self-consistency over Tabular Data
https://twitter.com/jerryjliu0/status/1746937115567636675 2024/1/16
https://twitter.com/llama_index/status/1746937012798800272
Rethinking Tabular Data Understanding with Large Language Models https://arxiv.org/abs/2312.16702v1
MixSelfConsistencyQueryEngine
## Camelot: PDF Table Extraction for Humans
只限 text-based PDFs,圖片的不行喔
https://camelot-py.readthedocs.io/en/master/
在 llamaindex finance data 範例中用到
https://twitter.com/jerryjliu0/status/1732566009574486365
https://colab.research.google.com/drive/1Y_lUUKMdC627J5EP0dK1H8NveovpYisM?usp=sharing#scrollTo=qUFUJFMjzFaR
## Table Transformer model (TATR)
將表格辨識出來成為圖片
https://huggingface.co/docs/transformers/model_doc/table-transformer
https://github.com/microsoft/table-transformer
https://twitter.com/llama_index/status/1730629675435835865
https://huggingface.co/spaces/nielsr/tatr-demo
## FT-ID
TFT-ID (Table/Figure/Text IDentifier) is an object detection model finetuned to extract tables, figures, and text sections in academic papers
https://huggingface.co/yifeihu/TFT-ID-1.0
https://x.com/hu_yifei/status/1816627442607366421
## TAG
* Text2SQL is Not Enough: Unifying AI and Databases with TAG
* https://arxiv.org/abs/2408.14717 (2024/8)
* https://github.com/tag-research/tag-bench
* https://ai.plainenglish.io/goodbye-text2sql-why-table-augmented-generation-tag-is-the-future-of-ai-driven-data-queries-892e24e06922
* https://x.com/lianapatel_/status/1828939097487945948 (2024/8/29)