
RubyConf China

Why Ruby?

Yukihiro "Matz" Matsumoto
まつもと ゆきひろ
matz@ruby-lang.org

Copyright (c) 2008 Yukihiro "Matz" Matsumoto, No rights reserved
though.

 Moore’s Law

 The number of Transistors
 in LSI Doubles Every

 18 Months

 Moore’s Law Means:

 Computer Grows Exponentially
 Faster
 Cheaper
 More Common

 Faster Computer

 PCs are Faster than Super
 Computers of 20 Years Ago

 Cheaper Computers

 We can Buy a PC for $400 Now

 Common Computers

 Now Everyone Owns Computers
 Personal Computers
 Cell Phones

 Cell Phone as a Computer

 Cell Phone as a Computer

 Everyone is Connected

 Broadband
 WiFi
 Mobile Networks

 Influence in Programming

 Moore’s Law Changes
 Software Complexity
 Programming Languages

 Software Complexity

 No Business Can Be Run
without Software

 We Need More Software
 Quicker
 Cheaper

 Humans Don’t Improve

 Moore’s Law Does Not Apply to
Humans

 Productivity

 We Need More Software with
Limited Resources

 Productivity

 We Have Faster Computers
 Development Efficiency At the

Cost of Runtime Efficiency

 Productivity

 The Most Important Factor of
Language Evolution

 Languages are One of the Tools
for Productivity

How Languages Help
Productivity

 Sapir-Whorf hypothesis

 Language determines the way
 we think.

 Theorem #1

 Languages influence
 human thought,

 more than you think

 Programming Languages

 Do programming
 languages

 influence human
 thoughts?

 Thinking in Programming
Language

 Natural languages are too
ambiguous.

 Or, too verbose.
 Or, too indirect.

 Thinking in Programming
Language.

 If programmers think in
 programming languages,

 They must influence thoughts
 as much as

 natural languages do.

 Theorem #2

 "languages" in
 Theorem #1 includes

 programming
 languages.

 Why don’t you choose a good
language?

 Programming
 langugages are so

 easy to learn.

 What is a good language?

 The language that helps thinking

 Recursion

 BASIC did not allow recursion

 Factorial

 def fact(n)
 if n == 0
 1
 else
 n * fact(n - 1)
 end
 end
 print "6!=", fact(6), "\n"
 6!=740

 A good Language

 does not restrict our thought

 Factorial Again

 print "200!=", fact(200), "\n"
 200!=78865786736479050355236321393218506
 2295135977687173263294742533244359449963
 4033429203042840119846239041772121389196
 3883025764279024263710506192662495282993
 1113462857270763317237396988943922445621
 4516642402540332918641312274282948532775
 2424240757390324032125740557956866022603
 1904170324062351700858796178922222789623
 7038973747200000000000000000000000000000
 00000000000000000000

 Less Restriction

 print "200!=", fact(200), "\n"
 200!=788657867364790503552363213932185062295
 13597768717326329474253324435944996340334292
 03042840119846239041772121389196388302576427
 90242637105061926624952829931113462857270763
 31723739698894392244562145166424025403329186
 41312274282948532775242424075739032403212574
 05579568660226031904170324062351700858796178
 92222278962370389737472000000000000000000000
 0000000000000000000000000000

 Ruby

 A good language

 Consise

 Succinctness is Power

 by Paul Graham
 Fred Brooks’ Law
 Less Lines ≒ Effective

 Succinctness is Power

 Less Code, Less Bugs
 Less Bugs, You Feel Yourself

Smarter.
 You can be 10 times (or even

1000 times) more productive

 More Factorial

 class Factorial {
 private static int fact(int n) {
 if (n == 1) return 1;
 return n * fact(n - 1);
 }
 public static void main(String[] argv) {
 System.out.println("6!="+fact(6));
 }
 }
 6!=740

 Succinctness Example

 def fact(n)
 if n == 1
 1
 else
 n * fact(n - 1)
 end
 end
 print "6!=", fact(6), "\n"
 6!=740

 Ruby

 A good language

 Inspiring

 Functional Factorial

 def fact(n)
 (1..n).inject(:*)
 end
 print "6!=", fact(6), "\n"
 6!=740

 A good language

 makes better programming
 experience

 For Better Programming
Experience

 Learnability
 Efficiency
 Memorability
 Errors
 Satisfaction
 According to Dr. Jacob Nielsen

 Learnability

 How easy is it for users to
accomplish basic tasks the first
time they encounter the design?

 Learnability

 Usability for Beginners
 Important to Acquire New Users
 "Common Sense" is the Key

 Efficiency

 Once users have learned the
design, how quickly can they
perform tasks?

 Efficiency

 More important than learnability
 Efficiency is the top purpose of

languages

 Memorability

 When users return to the design
after a period of not using it, how
easily can they reestablish
proficiency?

 Memorability

 Association
 Consistency
 Orthogonality
 Common Sense
 No Radical

 Errors

 How many errors do users make,
how severe are these errors, and
how easily can they recover from
these errors?

 Errors

 When you see repeated errors,
you have to do something.

 Errors are the source of design
inspiration.

 Satisfaction

 How pleasant is it to use the
design?

 Satisfaction

 We program to have fun.
 Even when we program for

money, we want to have fun as
well.

 How Ruby Serves

 Learnability
 Efficiency
 Memorability
 Errors
 Satisfaction

 How Ruby Serves

 Learnability
 Efficiency
 Memorability
 Errors
 Satisfaction

 Learnability

 Ruby is very conservative except
for a few places

 Quick to learn
 Quick to try

 Learnability Example

 Hello World!

 print "Hello World\n"
 Hello World

 How Ruby Serves

 Learnability
 Efficiency
 Memorability
 Errors
 Satisfaction

 Efficiency

 No Run-Time Efficiency

 Ruby focuses on the cost
of programming.

 Devlopment Efficiency

 Ruby focuses on the cost of
programming by

 Simplicity
 Consistency
 Smartness

 Simplicity

 Do you like programming
language to be simple?

 Probably you do.

 Simplicity

 Does language simplicity really
help you?

 not always.
 need more complex tool

sometimes

 Need More Complex Tool

 Knife vs Chain Saw
 Bicycle vs Airplane

 Human Heart: No Simple

 We love simplicity
 We love complexity
 We love easy problems
 We hate easy problems

 Pseudo-Simplicity

 Ruby is NOT a simple
 language.

 Simplicity Example

 Rakefile
 Rake = Ruby Make
 task :default => [:test]
 task :test do
 ruby "test/unittest.rb"
 end

 Simplicity Example

 In Simpler Syntax

 task({:default => [:test]})
 task(:test, lambda(){
 ruby "test/unittest.rb"
 })

 Solution-Simplicity

 Tool Complexity is OK
 if it makes the Solution Simple

 Efficiency Example

 /bin/cat in Ruby

 puts ARGF

 It would be more than 50 lines of
code in C

 How Ruby Serves

 Learnability
 Efficiency
 Memorability
 Errors
 Satisfaction

 Memorability

 Conservativeness helps here too
 Easy-to-remember syntax
 Ruby looks like other languages

 Memorability Example

 Can you write /bin/cat -n without
looking anything?

 I can, if I use Ruby.
 ARGF.each_with_index{|line,i|
 printf "%4d %s",i,line
 }

 How Ruby Serves

 Learnability
 Efficiency
 Memorability
 Errors
 Satisfaction

 Errors

 You will see less errors due to
 Consistent Syntax Rules
 Succinct Code
 Less code, Less bug.

 How Ruby Serves

 Learnability
 Efficiency
 Memorability
 Errors
 Satisfaction

 Satisfaction

 As a result, Ruby is fun to use.

 It makes you feel smarter.

Ruby the Language

 Ruby is Good for

 Text Processing
 Web Programming
 XML Programming
 GUI Applications

 Ruby is Good for

 Bioinformatics
 eXtreme Programming

 "I love it. Conceptually it is really clean and sweet."
 -- Kent Beck

 Why I created Ruby

 Just for Fun
 Tool for me myself
 Ideal tool for Everyday Task

 How I created Ruby

 Combine Good Things from the
Past

 Design Conservative
 Design a Tool I Want to Use
 To Have Fun

The History of
the Ruby Language

 Pre-History

 OO Fanboy
 Language Geek

 In 1993

 Project Started
 Mere Hobby

 Goals

 Scripting
 a la Perl
 Nice Clean Syntax
 With OO

 Real Goal

 To Enjoy
 Making Language
 Implementation
 Programming

 Process

 Lisp Semantics
 Smalltalk OO
 Conservative Syntax

 Process

 Deconstruct Perl
 Reorganize into Class Library

 Process

 Iterators from CLU
 Higher-order Functions using

Blocks

 Process

 Some Spice from Python
 ..and other languages

 Released

 1995-12-21

 fj.sources

 In 1997

 Hired by NaCl
 Became Full-time OSS

Developer

 In 1999

 First Book

 In 2000

 First English Book

 Ruby in early 2000s

 Became a Language
 for Geeks

 In 2004

 Ruby on Rails

 Ruby on Rails

 Web Application
 Framework

 Web development that doesn’t hurt

 Ruby on Rails

 10x Productive than Java
 15 Minutes to code Blog

 Enterprise Ruby

 Ruby started to be used in the
 Enterprise Environment

 Enterprise Ruby

 Concerns
 Fast Enough?
 Scales?

 Enterprise Ruby

 Issues are Matters of
 Resource/Money We Put in.

 Ruby’s Mindshare

 From Java To Ruby

 What’s "Enterprise"?

 What Major Players
Recommend:

 Sun Microsystems
 Microsoft
 Apple
 Etc.

 Why Ruby?

 Ruby is Productive
 Ruby is Motivating
 Ruby is Fun

 A Message from Ruby

 Enjoy Programming!

